Bacterial foraging-optimized PID control of a two-wheeled machine with a two-directional handling mechanism
نویسندگان
چکیده
This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical model, derived using Lagrangian modeling approach, is simulated in MATLAB/Simulink® environment. Bacterial foraging-optimized PID control with decoupled nature is designed and implemented. Various working scenarios with multiple initial conditions are used to test the robustness and the system performance. Simulation results revealed the effectiveness of the bacterial foraging-optimized PID control method in improving the system performance compared to the PID control scheme.
منابع مشابه
Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملNonlinear Modeling and Optimal Output Control of Two Wheeled Balancing Transporter
In this paper an optimal controller is proposed for a self-balancing electrical vehicle called Segway PT. This vehicle has one platform and two wheels on the sides and the rider stands on the platform. A handlebar, as a navigator, is attached to the body of Segway, with which the rider controls the vehicle. Since Segway uses electrical energy produced by batteries, resource consumption manageme...
متن کاملThe Development of a Passive False Twister Mechanism in Handling Low Strength Cotton Slivers on High Draft Spinning Machine
A passive false twist unit (spiral) has been developed to assist with the handling lowstrength slivers on a high speed-spinning machine with a high-speed feed. In the first trial, a falsetwist simulator device was constructed to determine whether the passive false twist unit can be usedon high speed feeding with different can distance from the feeding device. In the second trial, theeffects of ...
متن کاملMini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism
This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...
متن کامل